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Stochastic resonance as a crisis in a period-doubled circuit
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Stochastic resonance, a phenomenon in which random transitions between states in a multistate sys-
tem are modulated by an external periodic signal, is usually studied statistically. In an experiment with a
period-doubled circuit, we observe transitions between the two phases of the response induced by noise
or chaos. Adding a weak periodic modulation allows us to observe stochastic resonance. It is also noted
that transitions between phases are caused by a crisis which may be observed in the circuit. As a result,
we are able to describe stochastic resonance with the techniques of deterministic dynamics, providing a
link between the fields of deterministic and stochastic mechanics.

PACS number(s): 05.20.—y, 05.45.+b

I. INTRODUCTION

The concept of stochastic resonance has recently been
applied to such varied phenomena as the spectrum of
nerve signals in hearing, the onset of the ice ages, and the
detection of weak periodic signals buried in noise [1-3].
In the typical stochastic resonance situation, a sum of a
noise signal and a weak periodic signal is used to drive a
bistable system. By itself, the noise would cause the bi-
stable system to make transitions randomly between the
two states. If the amplitude of the noise signal is near the
minimum amplitude required for the system to make
transitions, then the probability of making a transition in-
creases nonlinearly as the periodic signal strength in-
creases. If one then filters the resulting signal with a
two-state filter that only describes which state the system
is in, the periodic component of the signal is greatly
amplified.

This phenomenon has been shown to be ubiquitous in
two-state systems, both in theory and in experiment
[1-3]. The theory describing stochastic resonance is sta-
tistical; the noise is assumed to be white noise, and the
probability of transition is derived from the laws of sta-
tistical mechanics [2,3]. The resulting probability de-
pends exponentially on the noise strength.

We would like to show that it is also possible to view
stochastic resonance from a dynamical systems
viewpoint. We have written a preliminary account of our
experiments [4]. It has been shown that stochastic reso-
nance still occurs when chaos, rather than noise, is used
as the nonperiodic component of the driving signal [5].
Chaos is a deterministic dynamical signal, so when chaos
is used in place of noise for stochastic resonance experi-
ments, the motion of the system is not predictable, but it
is not random; the entire system is deterministic. This
means that the “stochastic” resonance may be described
using dynamical, rather than statistical, concepts.

We show in an experiment that stochastic resonance
may be described in the same way as a crisis [6,7]. A
crisis is a situation in which the stable manifold of an un-
stable periodic orbit collides with the unstable manifold
of the same or a different periodic orbit. The stable mani-
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fold forms the boundary between different basins of at-
traction. The result is that one attractor collides with the
basin of attraction of another, so that the two separate at-
tractors become one. Using this description allows one to
consider stochastic resonance as a particular case of a
much larger group of dynamical phenomena, and to de-
scribe stochastic resonance through the use of dynamical
concepts. There is other work describing stochastic reso-
nance near a crisis, but the process itself is still con-
sidered statistically in that work [8,9]. Nicolis, Nicolis,
and McKernan [10] have studied stochastic resonance in
a chaotic two-well Duffing oscillator, where chaos pro-
vides the equivalent of the noise signal. Our work is
different in that we consider a periodic one-well Duffing
system where the chaos is added to the driving term. We
also show that the behavior near the crisis may be
modeled using dynamical concepts.

There is also a recent paper by King and Gaito [11]
that uses a stochastic analogy to study a catastrophe in a
deterministic two-well system. They use this analogy to
understand the effect of changing the symmetry of the
two wells on the dynamics of the system. Arrechi and
co-workers have described the spectra produced by
noise-induced hopping between different attractors in
multistable systems [12,13]. Our work is also related to
both research on noise-induced crises [14] and work on
quasiperiodically driven Duffing systems [15].

II. EXPERIMENT
A. Period doubling

The experiment is based on a driven circuit simulating
the single-well Duffing equations. This circuit has been
described in previous work [16]. The circuit is described
by the equations
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0, abs(x)<1.2,
G(x)=1ix—1.2sgn(x), 1.2<abs(x)<2.6, (3)
2x —3.8sgn(x) , 2.6=abs(x),

where A is the amplitude of the cosine drive and C is a
constant offset that may be added to the drive. The fre-
quency w, is the frequency of the periodic drive, and w,,
is the frequency of a small periodic modulation with am-
plitude €. The function f(¢) may be either noise or
chaos, and its amplitude is multiplied by . The function
G (x) is a piecewise linear approximation to a cubic func-
tion. This function was used because it was much easier
to characterize and match than other types of nonlinear
functions available in circuits. The time factor a is
1x10*s™L

The circuit is driven so that its response is period dou-
bled. When period doubled, the response has two possi-
ble phases, one shifted by one drive cycle from the other.
Figure 1 is a two-dimensional plot of a period-doubled at-
tractor plotted from data from this circuit. It is possible
to make the system shift from one phase to the other by
adding noise or chaos to the drive signal. As we have
shown previously, this phase flip occurs when the per-
turbed period-doubled circuit finds itself on an unstable
period-1 orbit [16]. The period-1 orbit persists for one or
more cycles, allowing the phase flip to occur. Because we
are looking at two different phases as our two states, their
symmetry is not affected by inaccuracies in the construc-
tion of the circuit.

The Duffing circuit is driven by a 726-Hz sine-wave
signal with an rms amplitude of 4.6 V and an offset of 0.3
V from a signal generator. To this may be added a signal
from a chaotic circuit or noise from a noise generator. A
second function generator supplies a sinusoidal modula-
tion signal that is also added to the drive. The drive sig-
nal generator also provides a synchronous signal, which
is used to strobe a digitizer in order to collect a time
series consisting of the output of the circuit at a constant
phase of the drive. This time series is downloaded to a
computer, where the data is used to determine the phase
of the response.
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FIG. 1. Plot of the period-doubled attractor from the circuit
used in these experiments.

T. L. CARROLL AND L. M. PECORA 47

The time series from the digitizer consists of a zigzag
line of points. For most phases of the drive, such as the
positive-going zero crossing, the unstable period-1 orbit
that forms the boundary between the two phases will be
approximately halfway between the two halves of the
period-2 orbit, so the center line of the zigzag time series
corresponds approximately to this unstable period-1 or-
bit. The phase variable is initially set to an arbitrary
value, either O or 1. If the time series is above the center
line at every even number of drive cycles and below at
every odd number, the phase variable is set to 1. The op-
posite phase is set to zero. The initialization of the phase
variable may produce a spurious indication of a phase flip
at the beginning of the time series.

After 4096 cycles, the power spectrum of the phase
time series is calculated. This is repeated for 20 time
series and the resulting power spectra are averaged to-
gether.

To compare the effect of our deterministic chaos to
that of noise, we used a chaotic signal from a hysteretic
oscillator circuit [17] and white noise from a noise gen-
erator. Figure 2(a) shows the power spectrum of the
chaotic signal, while Fig. 2(b) shows the spectrum of the
noise. The amplitude distributions of both signals are
shown in Fig. 3.
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FIG. 2. (a) Power spectrum of chaos from a hysteretic oscil-
lator circuit used in these experiments. (b) Power spectrum of
noise from the noise generator used in these experiments.
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FIG. 3. Normalized distribution p(D, ) of normalized ampli-
tudes D, of the signals from the noise generator (solid line) and
the chaotic circuit (dotted line).

B. Crises

The experiment was first done with no modulation sig-
nal. The amplitude of the chaos added to the drive signal
was first set to a low value, so that the period-doubled
system did not flip phase. The amplitude of the chaos
was then increased so that flipping did occur, and the
average number of cycles between flips was recorded.
The average cycles per flip versus chaos or noise ampli-
tude is plotted in Fig. 4(a). This situation resembles
crisis-induced intermittency [6,7].

Grebogi and co-workers [6,7] determined that the scal-
ing of the number of transitions between different parts of
the attractor after a crisis followed a power law of the
form K/(A— A,)?, where A4 in our experiment is the
drive amplitude, 4, is the amplitude at which the crisis
occurs, and y is the exponent. It has been shown in ex-
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FIG. 4. Average number of cycles between phase flips for the
period-doubled circuit when noise or chaos of rms amplitude 4
is added to the drive signal. On the left axis is the average num-
ber of cycles per flip <cfc) when chaos is used. On the right
axis is the average number of flips (c,n) when noise is used.

The dotted lines are fits to the type of power law in Eq. (4).

periments that this law also holds for noise-induced crises
[14]. If we fit a power law of the form

K,

+(A—Ac)” @

K,

to the data in Fig. 4, we find that K, is —93, K, is 1967,
A, is 166 mV, and y is 0.68 for chaos, and K;=—119,
K,=8211, A,=213 mV, and ¥ =0.83 for the noise. The
additive constant K, is used to allow for the fact that our
algorithm for finding phase flips may report up to 20
spurious flips due to initialization at the beginning of
each time series.

We use the periodically driven Duffing circuit dynam-
ics as an approximation to the dynamics of the same cir-
cuit when noise or chaos is added to the drive. We have
shown before [16] that if the added signal is not too large
and the system is stable to the new driving, the dynamics
are not greatly changed.

We would like to apply the theory of crises, which ap-
plies to deterministic dynamical systems, to the Duffing
circuit. Since both the periodic drive signal and the
chaos come from deterministic dynamical systems, their
sum must also be the output of a dynamical system, so
that when chaos is added to the drive, the Duffing circuit
is still a deterministic dynamical system that is not very
different from the original dynamical system. We also
find below that the same theory gives good results when
noise is added to the drive.

The factor by which the chaotic signal is multiplied be-
fore being added to the periodic signal is a parameter of
the system. The theory of critical exponents for crises is
not parameter specific; rather, it says that given a dynam-
ical system, the critical exponent near a crisis depends
only on the orbits involved in the crisis and not on which
parameter is being changed. As long as the dynamical
system fits the approximations in Ref. [7], namely that
the tangency is approximately quadratic, then one may
calculate the critical exponent for this crisis from the ei-
genvalues of the crisis-mediating periodic orbit, in our
case an unstable period-1 orbit.

To apply the theory of crises, it is necessary to deter-
mine what type of crisis is present here. Grebogi et al.
[7] show that the critical exponent for a crisis is deter-
mined by the eigenvalues of the unstable periodic orbit
whose stable manifold forms the boundary between the
basins of attraction of the stable orbits. We know from
experiments that this unstable orbit is a period-1 orbit.
The exponent will also depend on whether the crisis
occurs when the stable manifold of the unstable periodic
orbit becomes tangent to the unstable manifold of itself (a
homoclinic tangency), or a different unstable orbit (a
heteroclinic tangency).

To apply this theory, it is necessary to find the point on
the attractor where the crisis first occurs. This was deter-
mined from digitized time series. For a given drive
phase, the time series from the circuit without noise or
chaos may have one of two phases. The phase was deter-
mined by finding the average value of the time series for a
given drive phase and using this value as a midpoint.
Which phase the circuit was in depended on which side
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of the midpoint the time series was on.

Noise or chaos was then added to the periodic signal
driving the circuit, causing the circuit to flip phase. For
a noise amplitude just above the crisis, the value of the x
and y variables in the circuit when the phase flipped were
recorded. Figure 5 shows these locations as large dots su-
perimposed on the attractor. As Fig. 5 shows, there are
two locations where the crisis occurs. Both locations cor-
respond to the same phase of the drive (1.2 V going nega-
tive) but opposite phases of the response.

Also shown as a dotted line in Fig. 5 is the unstable
period-1 orbit. Recent developments in theory and ex-
periment have shown how to stabilize unstable periodic
orbits in chaotic systems using small perturbations to a
parameter [18]. Other work has extended these methods
so that unstable orbits may be tracked outside of the
chaotic region [19]. This tracking method was applied to
find the unstable period-1 orbit for the same parameter
settings as the period-2 orbit.

The same tracking method can be used to locate the
stable manifold of the unstable period-1 point for the
drive phase at which the crisis first occurs. A computer
with two digital-to-analog converters was used to set
40000 different initial conditions for the circuit. A new
initial condition was set when the drive signal passed
through the phase for the first crisis, i.e., when the ampli-
tude of the drive signal was 1.2 V and decreasing. The
control that stabilized the unstable period-1 orbit was left
on while these initial conditions were being set. After
100 cycles, the phase of the circuit was determined. The
possibilities were period-2 phase A, period-2 phase B, or
period-1 orbit. Figure 6 is a plot of the final state for
each of 40000 initial conditions. The black regions cor-
respond to a final state of period-doubled phase A, the
gray regions to period-doubled phase B, and the white to
period-1 orbit. The period-1 orbit itself is unstable, so
the white regions correspond to initial conditions that
come within a window in the x coordinate of 0.3 V cen-
tered on the unstable period-1 point, and then are kept
near the period-1 orbit by the controller. The white re-
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FIG. 5. Dots show the x and y coordinates where a phase flip
occurs for a chaos or noise amplitude just above the crisis value.
The solid line is the period-2 attractor, while the dotted line is
the unstable period-1 orbit.
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FIG. 6. Basins of attraction for the period-doubled circuit
and unstable manifold for the unstable period-1 fixed point (all
determined experimentally). The black corresponds to phase 4
of the period-2 orbit, the gray to phase B, and the white to the
unstable period-1 orbit. The squares are a Poincaré section tak-
en after setting the circuit to the unstable period-1 point and
watching it move to the period-2 points. The axes are labeled
—x and —y because the directions are reversed by the setup
used to set the initial conditions.

gions include portions of the stable manifold of the unsta-
ble period-1 point. The control used in this experiment
does not greatly change the dynamics; it is used to keep
the circuit near the period-1 orbit long enough so that it
is easy to determine that it did come close to the period-1
point.

The squares superimposed on Fig. 6 follow along the
unstable manifold. With no control on, the digital-to-
analog converters were used to set an initial condition
very close to the unstable period-1 point. The output of
the circuit was then strobed every time the drive passed
through the phase for the first crisis. The output from
the circuit moves away from the period-1 point along the
unstable manifold until it comes to the two period-2
points.

The output of the circuit when noise or chaos is added
to the periodic drive may be strobed at the same drive
phase used to plot the manifolds to generate pseudo-
Poincaré sections of the system. We call these pseudo-
Poincaré sections because we use only the periodic part
of the drive to generate them. Figure 7 shows such a sec-
tion when the noise level is below that required for a
crisis. The period-1 point is shown as a black dot. The
two period-2 points have become large fuzzy regions
stretching out along the unstable manifold of the period-1
point. The crisis occurs when these regions touch the
stable manifold of the period-1 point. This crisis involves
the stable and unstable manifolds of the same period-1
point, making it a homoclinic crisis.

Grebogi et al. [7] show that for a crisis caused by a
homoclinic tangency in a two-dimensional system, the
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FIG. 7. Poincaré section of the Duffing circuit when noise
has been added to the periodic drive. The large dot is the loca-
tion of the unstable period-1 point.

value of the exponent y is given by
r= ln|Bz|
n|BB,I*

where B, and 3, are the unstable and stable eigenvalues of
the orbit involved in the crisis. To find these eigenvalues,
the circuit was started at ten slightly different initial con-
ditions near the unstable period-1 point. The three com-
ponents of the initial conditions were recorded by a digi-
tizer, as were the three corresponding values 20 us (about
1/75th cycle) later. The method of Eckmann et al. [20]
was then used with the experimental data to find the ei-
genvalues for the unstable point. The magnitudes of the
three eigenvalues were 1.14, 0.65, and 0.0002. The dy-
namics were approximately two dimensional here, so Eq.
(2) may be used. The resulting value of y was 0.72, close
to the value measured from the power-law fit of 0.68 for
chaos and 0.83 for noise. This supports the claim that
the flipping of the phases occurs due to a crisis. This is
not surprising when chaos is used, for the entire system is
then deterministic. It is more surprising when noise is
used, as the noise signal was not deterministic.

The fact that we see a crisis when noise is used is a
consequence of the fact that the noise is driving a deter-
ministic system. The noise distribution itself, as pictured
in Fig. 3, has an exponential tail, so that we would expect
the number of phase flips to increase exponentially as the
noise amplitude increases. This is not the case because
the Duffing circuit is not being driven adiabatically by the
noise. Rather, the circuit acts as a bandpass filter; noise
frequencies near the center of the pass band will have a
much larger effect on the circuit than frequencies far
from the center. In Fig. 8 is plotted the actual amplitude
distribution of the driven period-doubled Duffing circuit
strobed with the maximum of the sinusoidal drive signal.
It may be seen that the distributions for the chaos and
the noise are almost the same. Least-squares fits confirm
that, except for an exponential tail for very small proba-
bilities, the distribution for the noisy Duffing circuit fol-
lows almost the same power law (with an exponent of ap-
proximately 3) as the chaotic driven Duffing circuit. The

(5)
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FIG. 8. Amplitude distributions p(D,) of the normalized
amplitude D, of the x signal from the period-doubled Duffing
circuit for a constant phase of the drive. The solid line corre-
sponds to the noise, while the dotted line corresponds to the
chaos.

half-width at half-maximum of the amplitude distribution
for the driven period-doubled circuit also obeys a power
law as the noise amplitude is increased, with an exponent
of approximately 1.6.

C. Stochastic resonance

For our stochastic resonance studies, we added a small
periodic signal (the modulation signal) to the drive. We
used a 100-Hz sine wave with an amplitude of 180 mV
rms or a 300-Hz sine wave of 72 mV rms. The 100-Hz
signal was larger than the 300-Hz signal because the cir-
cuit acts as a bandpass filter. Frequencies farther from
the center of the band (which was near 700 Hz) had a
smaller effect on the circuit than those closer to the
center.

The periodic modulation shifts the location of the un-
stable period-1 point and the period-2 points. Figure 9
shows a pseudo-Poincaré section of the two period-2

25 T T T T

. o ]

L P A ]

a5 F 3

s 1 F E
=~ C ]
> 05 Q 3
o E 3

05 | =

P S B B R =

35 3 25 2 1.5 1 0.5

x (V)

FIG. 9. Poincaré sections of the period-doubled Duffing cir-
cuit and the controlled unstable period-1 orbit of the Duffing
circuit when a 300-Hz modulation has been added to the drive.
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points and the controlled unstable period-1 point when a
300-Hz modulation signal was added to the drive. The
movement of the period-1 point in a periodic fashion
causes the noise amplitude for a crisis to behave periodi-
cally. This is similar to the modulation of a potential
barrier in stochastic resonance. If noise or chaos is added
to the drive signal at the same time as the modulation,
stochastic resonance does occur.

Figure 10 is a power spectrum of the phase time series
for a modulation frequency of 100 Hz when the chaos
amplitude was 64 mV rms. The spectrum shows a peak
at the modulation frequency and two odd subharmonics
at 25 and 75 Hz, and a peak at 265 Hz. This last peak
corresponds to the difference between half the driving fre-
quency (726 Hz) and the modulation frequency (100 Hz).
Because we take our data at the drive frequency, the
spectrum only goes up to half the drive frequency. The
background spectrum is not Lorentzian, as is typical of
stochastic resonance [1-3], because the adiabatic approx-
imation does not hold here.

Figure 11 shows the signal-to-noise ratios of the peaks
at 100 and 265 Hz as the amplitude of the chaos is in-
creased. The signal-to-noise ratio was found by compar-
ing the amplitude of a peak to the amplitude of the back-
ground power spectrum within 5 Hz on either side of the
peak, as is standard in stochastic resonance. The noise
value is an average of the nearby noise background, and
we estimate to be within 0.5 dB of the noise at the loca-
tion of the peak. The signal-to-noise ratio at 100 Hz
drops linearly with the chaos amplitude, indicating no
stochastic resonance, while at 265 Hz, the signal-to-noise
ratio increases at first as the chaos amplitude increases,
indicating stochastic resonance. The reason that we see
stochastic resonance at 265 Hz and not at the fundamen-
tal is because we are using a period-doubled system.

It was shown above that just above the crisis, there is
one phase of the drive for which the circuit can flip
phase. Well above the crisis, there are more points, but
one point is still more likely than the others. The transi-
tion probability is therefore modulated by the drive fre-
quency f;. The probability of flipping is also larger when
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FIG. 10. Power spectrum of the phase time series for the
period-doubled Duffing circuit when chaos and a 100-Hz modu-
lation have been added to the drive.
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FIG. 11. Signal-to-noise ratio R vs chaos amplitude A4 for
spectral lines at 100 and 265 Hz when a 100-Hz modulation and
chaos are added to the drive for the period-doubled Duffing cir-
cuit.

the modulation signal is at a maximum, so this rate
should be proportional to f,,, where f,, is the modula-
tion frequency. These two rates are not independent; i.e.,
if the system is at the point on the attractor where flips
are most likely to occur but the modulation is at a
minimum, flipping is very unlikely. One rate will modu-
late the other, so the actual rate is proportional to the
product of periodic functions, like sin(f,,)Xsin(f,).
From the identity sin(a)sin(B)=1cos(a—fB)—icos(a
+pB), the sum and difference frequencies will be present.
Because the circuit is nonlinear, harmonics of these fre-
quencies are also present. Because the time series is digi-
tized at f;, the largest frequency in the output spectrum
is f;/2, and the largest modulation term that is visible is
fa/2=fm-

Figure 12 shows the power spectrum of the phase time
series when the modulation frequency is a 300-Hz sine
wave with an amplitude of 72 mV rms. The modulation
at 300 Hz is visible along with f;/2—f, at 68 Hz, and
several other subharmonics that are not amplified. In
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FIG. 12. Power spectrum of the phase time series for the
period-doubled Duffing circuit when chaos and a 300-Hz modu-
lation have been added to the drive.
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FIG. 13. Signal-to-noise ratio R vs chaos amplitude A for
spectral lines at 68 and 300 Hz when a 300-Hz modulation and
chaos are added to the drive for the period-doubled Duffing cir-
cuit.

Fig. 13, one may again see that the main stochastic reso-
nance effect takes place for the frequency f,/2—f,,.
There appears to be some small amplification of the
modulation frequency for small amplitudes of chaos. It is
not certain if this is real or due to measurement errors.
The more typical type of stochastic resonance involves
noise instead of chaos. White noise from the noise gen-
erator was added to the drive signal when a 300-Hz
modulation was present, producing the power spectrum
seen in Fig. 14. The stochastic resonance effect was simi-
lar to that observed with chaos, although it was not as
large. The signal-to-noise ratios for this spectrum are
shown in Fig. 15. It was harder to determine which
phase the circuit was in when larger amplitudes of noise
were used, so the signal-to-noise ratio shows much
scatter. The stochastic resonance effect here is not as
large as when chaos is used, probably because the noise
distribution is much more spread out, as was shown in
Fig. 3. The chaos amplitude distribution increases much

20 i B
-25
-30
-35

-40

S (dB)

-45

-50

-55

[EETESNETE FNURE SRRNY FURTE RN SRR FRRE!

T T T T T T

.60 L

f (Hz)

FIG. 14. Power spectrum of the phase time series for the
period-doubled Duffing circuit when noise and a 300-Hz modu-
lation have been added to the drive.
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FIG. 15. Signal-to-noise ratio R vs noise amplitude A for the
spectral line at 68 Hz when a 300-Hz modulation and noise have
been added to the drive for the period-doubled Duffing circuit.

faster for large amplitudes, so the probability of phase
flipping changes much more quickly as the chaos ampli-
tude is increased when just above the crisis.

III. THEORY

The theory most commonly used in describing stochas-
tic resonance was developed by McNamara and Wiesen-
feld [2]. They look at a two-state system where the two
states are designated by + and —. The probability that
the system is in the * state is n, while the rate of transi-
tion out of the + state is W,.. The change in population
of the + state is given by

dn +
dt

McNamara and Wiesenfeld solve this equation and then,
assuming a rate of the form

W (t)=f(utmecosw,,t) , (N

=W_()—[W. . (O+W_()]n, . 6)

they derive the form of the power spectrum for this sys-
tem.

To find a rate law for the period-doubled system, we
start with the observation that in the unmodulated sys-
tem, the average time between phase flips was given by a
critical power law. This power-law form may be inverted
to give a flipping rate for the crisis:

(x—A4.) 8
W, (1) X, , (
where x is the chaos amplitude, A4, is the chaos ampli-
tude at which the crisis occurs, and ¥ and K, come from
Eq. (4). The additive constant in Eq. (4) is set equal to O
because transitions out of a particular phase are not pos-
sible below the critical chaos amplitude. The constant
was present in Eq. (4) because our algorithm for finding
phase flips always gave a small number of flips, even
when none were present.

Adding the modulation signal will change this rate.
Figure 9 shows how this effect occurs. With the modula-
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tion added to the drive, previously described control
techniques based on the Ott-Grebogi-Yorke method [18]
were used to keep the circuit in the unstable period-1 or-
bit that the system had to go through in order to flip
phase. In Fig. 9 are plotted Poincaré sections of the
modulated unstable period-1 orbit and the modulated
stable period-2 orbit. The modulated period-1 orbit
forms a torus, sometimes coming closer to one half of the
period-2 orbit, sometimes coming closer to the other.
The effect of this will be to change the critical chaos am-
plitude at which the period-2 orbit touches the stable
manifold of the period-1 orbit, which is the boundary be-
tween the basins of attraction between the two period-2
states. To account for this, the rate law is changed to

(x —A,x7,,co8m,,t)"
K, ’

Wo(t)= )

where 7, is the modulation amplitude and w,, is the
modulation frequency. No transitions are possible if the
attractors do not overlap, so when the numerator is less
than or equal to 0, W (?) is set equal to 0. This rate is in
the same form as Eq. (4), with (x — 4_) corresponding to
4. McNamara and Wiesenfeld [2] actually work out a
simple example that corresponds to our rate law with a
critical exponent of y = 1.

Equation (6) was numerically integrated with the rate
law of Eq. (9), using a fourth-order Runge-Kutta integra-
tion routine and a modulation frequency w,, of 100 Hz.
The autocorrelation function and power spectrum were
found using methods similar to those used in McNamara
and Wiesenfeld. The resulting power spectra showed
peaks at the modulation frequency and odd harmonics, as
may be seen in Fig. 16. Stochastic resonance effects were
seen as the amplitude of the chaos or noise was increased.
The signal-to-noise ratio at the modulation frequency is
plotted in Fig. 17.

Using a crisis-rate law such as that in Eq. (9) also al-
lows the prediction of other characteristics of the sto-
chastic resonance. It was seen numerically, for example,
that the peak signal-to-noise ratio during stochastic reso-

&

LA L L L L L L L B

-55

-60

S (dB)

-65

-70

-75

T T T T T T T T T T O T T

o b oo b b b b

vl b

caa b e b b Ly

-80

o

50 100 150 200 250 300 350 400
t (Hz)

FIG. 16. Numerically generated power spectrum found by
using the rate law of Eq. (9) with the McNamara and Wiesen-
feld theory. The modulation frequency was 100 Hz.
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FIG. 17. Numerically generated signal-to-noise ratio R vs
noise amplitude A for the spectral line at 100 Hz found by using
the rate law of Eq. (9) with the McNamara and Wiesenfeld
theory.

nance increased exponentially as y increased.

It was also possible to predict the location of the peak
signal-to-noise ratio using the crisis approach. When the
amplitude of the chaos was low or moderate, the modula-
tion term in Eq. (9) sometimes caused the rate to be posi-
tive and finite, and sometimes zero. When the chaos am-
plitude x was greater than A, +17,,, the rate was always
positive. Because of this, the effect of the modulation was
not as large when the chaos amplitude reached this point.
The signal-to-noise ratio should not increase above this
point, designated as X ,,. For 100-Hz modulation of the
period-doubled orbit, 4.+, is 238 mV. From Fig. 17
(numerical result) and Fig. 11 (experimental result), it
may be seen that the signal-to-noise ratio begins to de-
crease when the chaos amplitude is near this value. For
the 300-Hz modulation in Fig. 13, 4.+7,, is 238 mV,
which is also the chaos or noise amplitude for the max-
imum signal-to-noise ratio. When noise is added to the
drive, the maximum signal-to-noise ratio in Fig. 15
should be near 285 mV. Because of the difficulty in deter-
mining which phase the system is in for high levels of
noise, it is hard to tell if this rule is obeyed in this case.

IV. CONCLUSIONS

Stochastic resonance, a subject that is usually studied
statistically, may also be studied using techniques
developed to study deterministic systems. We have
shown in a period-doubled Duffing circuit that stochastic
resonance effects may be caused by a deterministic crisis.
This crisis is very similar when deterministic chaos or
white noise is used. These different cases are similar be-
cause the noise is affected by the deterministic dynamics
of the Duffing circuit, as was shown in Figs. 7 and 8.

This work suggests that adding chaos or noise to a
dynamical system does not just “mess up” the system.
There are measurable dynamical effects that take place.
This is especially important if one considers the driving
of dynamical systems with chaos. In this case, this paper
shows that since the resulting dynamical system is com-
pletely deterministic, the techniques of deterministic dy-
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namics are appropriate to describe the behavior of the
system. It is also shown that the same deterministic tech-
niques worked when random noise was used to drive the
system.
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FIG. 6. Basins of attraction for the period-doubled circuit
and unstable manifold for the unstable period-1 fixed point (all
determined experimentally). The black corresponds to phase A
of the period-2 orbit, the gray to phase B, and the white to the
unstable period-1 orbit. The squares are a Poincaré section tak-
en after setting the circuit to the unstable period-1 point and
watching it move to the period-2 points. The axes are labeled
—x and —y because the directions are reversed by the setup
used to set the initial conditions.



